Scale invariance implies conformal invariance for the three-dimensional Ising model.

نویسندگان

  • Bertrand Delamotte
  • Matthieu Tissier
  • Nicolás Wschebor
چکیده

Using the Wilson renormalization group, we show that if no integrated vector operator of scaling dimension -1 exists, then scale invariance implies conformal invariance. By using the Lebowitz inequalities, we prove that this necessary condition is fulfilled in all dimensions for the Ising universality class. This shows, in particular, that scale invariance implies conformal invariance for the three-dimensional Ising model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality and conformal invariance for the Ising model in domains with boundary

The partition function with boundary conditions for various two-dimensional Ising models is examined and previously unobserved properties of conformal invariance and universality are established numerically.

متن کامل

Universality and conformal invariance for the Ising model in domains

The partition function with boundary conditions for various two-dimensional Ising models is examined and previously unobserved properties of conformal invariance and universality are established numerically. ∗ First appeared in J. Stat. Physics 98, Nos. 1/2, pp. 131–244, 2000

متن کامل

Phenomenology of local scale invariance : from conformal invariance to dynamical scaling

Statistical systems displaying a strongly anisotropic or dynamical scaling behaviour are characterized by an anisotropy exponent θ or a dynamical exponent z. For a given value of θ (or z), we construct local scale transformations, which can be viewed as scale transformations with a space-time-dependent dilatation factor. Two distinct types of local scale transformations are found. The first typ...

متن کامل

Introduction to Schramm-Loewner evolution and its application to critical systems

In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...

متن کامل

Bulk and surface critical behavior of the three-dimensional Ising model and conformal invariance.

Using a continuous cluster Monte Carlo algorithm, we investigate the critical three-dimensional Ising model in its anisotropic limit. From the ratio of the magnetic correlations in the strong- and the weak-coupling directions, we determine the length ratio relating the isotropic Ising model and the anisotropic limit. On this basis, we simulate the critical Ising model on a spherocylinder S2 x R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 2016